

Miscellaneous Exercise Question Bank

What compound is represented by the Newman projection shown? 1.

CH₃CH₂CH₃ (A)

(B) (CH₃)₂CHCH₂CH₃

 $CH_3CH(CH_3)_2$ (C)

- CH₃CH₂CH₂CH(CH₃)₂ (D)
- ***2**. Which of the following is an electrophile?
 - H^{+} (A)
- **(B)** BF_3
- (C) $^{^{+}}\mathrm{NO}_{2}$
- Fe^{3+} (D)
- 3. Minimum number of carbon needed for an ester to show optical isomerism are:

(

- (A)
- 5 **(B)**
- 6 (C)
- **(D)** 7

4.

9

Number of resonating structures of the given carbocationare :

(A)

(C)

- (D)
- **(B)** 10
- Which of the following is not a nucleophile? **5**.
 - (A) FeBr₃

(B) Br^{-}

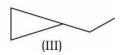
(C) NH_3

- **(D)**
- 6. Compare the bond strength of the indicated bonds in the given compound :

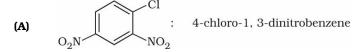
- 3 > 1 > 2(B)
- (C) 2 > 1 > 3
- **(D)** 2 > 3 > 1

- Which of the following is unstable at room temperature? 7.
 - (A)

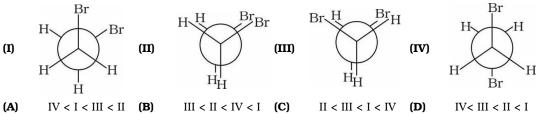
(C)


(D)

8. Which of the following will have largest heat of combustion?


II

(B)


- (A)
- (C) III
- All will have same heat of combustion because DBE = 1 for all.

Which of the following is correctly matched? 9.

- 4-Methyl-5-chloronitrobenzene **(B)**
- **OMe** 3-chloro-4-Methoxytoluene (C)
- 4-Ethyl-2-methylaniline **(D)**
- 10. Which is an electrophile:
 - (A) BCl_3 **(B)** CH_3OH (C) NH_3 **(D)** CO
- 11. Rank the following conformations in order of increasing energy:

12. Which of these would you expect to have significant

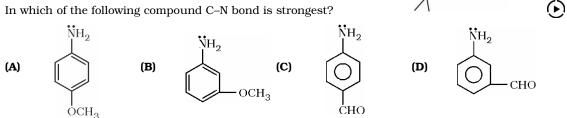
resonance energy?

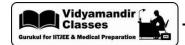
(II)

(III)

III (C) All of the above

II


(A) **(B)**


- 13. Which of the following is an electrophile:
 - - (A) **(B)** H_2O SO_3
- (C) NH_3

(I)

(D) ROR

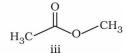
- 14. Number of α -hydrogen in given compound are :
 - (A) 2 (B) 3 (C)
- **15**. In which of the following compound C-N bond is strongest?

16. Which of the following compounds are structural isomers of C_5H_{10} ?

(1) 2-methylbut-2-ene

(2) 3-methylbut-1-ene

(3) Pent-1-ene


(4) 3-Methyl butane

- (A) (1) and (4) only (B)
- (4) and (3) only (C)
- (2) and (4) only (D)
- (1), (2) and (3)
- **17.** Compare the bond lengths of the indicated bonds in the given compound :
 - (A) a > b
 - **(B)** a < b
 - (C) a = b
 - **(D)** Cannot be predicted

- **18.** Choose the correct option for increasing extent of resonance stabilization of following compounds :

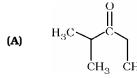
- (A) i< ii < iii
- **(B)** i< iii < ii
- (C) ii <i< iii
- (**D**) ii < iii <i
- **19.** Number of stereoisomers in 3-methyl-5-propylcyclohexene are :
 - **(A)** 2
- **(B)**
- **(C)** 6
- **(D)** 3

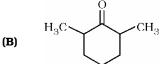
- *20. Ethers can act as:
 - (A) Bronsted acids

(B) Bronsted bases

(C) Lewis acids

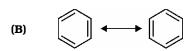
- (D) Lewis bases
- **21.** Number of hyperconjugating structure in given compound are :

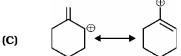



(A) 0

(B)

(C) 2

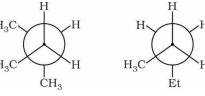

- **(D)** 3
- **22.** Which of the following compounds cannot exhibit keto-enol tautomerism?



(c) H_3C c=0

- (D) H_3C CH_3 CH_3
- **23.** Which of the following are not resonating structures of each other?
 - (A) CH_3 CH_2CH_3 and CH_3 $C=CHCH_3$

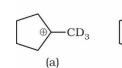
(D) $CH_3CH = CH - CH - CH = CH_2$ and $CH_3CH - CH = CH - CH = CH_2$


- 24. Compare the bond lengths of the indicated bonds in the given compound :
 - (A) a < b = c

a > b = c

(C) a = b = c **(D)** cannot be compared

25.



Type of isomerism shown by given pairs is:

- Conformational (B)
- Positional
- (C) Chain
- (D) Metamerism
- Rank the following according to stability (most stable to least stable). 26.

- (A) a > b > c
- (B) a > c > b
- (C) c > b > a
- (D) b > c > a
- 27. Isomers which can be interconverted through rotation around a single bond are :
 - conformers

(B) diastereomers

(C) enantiomers

- (D) positional isomers
- 28. Which of the following is correct IUPAC name of compound given below.
 - (A) 2, 3-diethylcyclopentene
- **(B)** 1, 5-diethylcyclopentene
- (C) 1, 2-diethylcyclo-2-pentene
- (D) none of these

- How many isomers are possible for C₇H₁₆? 29.
 - (A)

- **(B)**
- (C)
- **(D)** 9

- *30 (I)
- (III)
- (IV)

Correct relationship between above compounds :

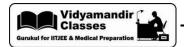
- (A) II and III are Geometrical isomers
- **(B)** I and II are Metamers
- III and IV are Tautomers (C)
- **(D)** I and IV are Geometrical isomers

X(II), Y(III), Z(I) (**D**)

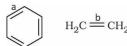
31. There are a number of definitions for acids and bases. Match the following definitions to the correct theory.

Theory		Definition	
X.	Arrhenius	I	Donates or accepts protons
Y.	Bronsted-Lowry	II	Donates or accepts a lone pair of electrons
Z.	Lewis	III	Donates a proton or a hydroxide

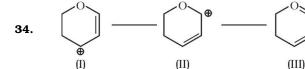
X(I), Y(III), Z(II) (C)


- X(I), Y(II), Z(III) (B) Maleic acid and fumaric acid are:
- (A) Position isomers
- (B) Geometric isomers

(C) Enantiomers (D) Functional isomers

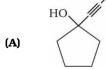

32.

(A)


X(III), Y(I), Z(II)

33. Compare the bond lengths of the indicated bonds in the given compound :

- (A) a > b
- a < b
- (C) a = b
- **(D)** cannot be predicted

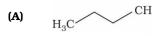

The most stable canonical structure among the given structure is :

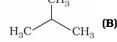
- (A)
- (B)
- (C) III
- **(D**) all are equally stable
- **35**. Among the following compounds, which is not a structural isomer of others?

(

 \odot

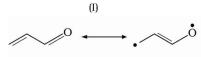
(C)

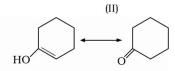



(D)

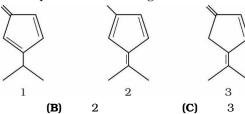
- Which will be the least stable resonating structure? 36.
 - $CH_2 = CH \overset{\oplus}{CH} \overset{\ominus}{CH} \overset{\bullet \bullet}{N} H_2$ (A)
- (B)
- $\overset{\Theta}{C} \overset{\oplus}{H_2} \overset{\bullet}{C} \overset{\bullet}{H} \overset{\bullet}{C} \overset{\bullet}{H} = \overset{\bullet}{C} \overset{\bullet}{H} \overset{\bullet}{N} \overset{\bullet}{H_2}$

- $\overset{\Theta}{\text{CH}}_2 \text{CH} = \text{CH} \text{CH} = \overset{\oplus}{\text{NH}}_2$ (C)
- $CH_2 = CH \overset{\Theta}{C}H CH = \overset{\oplus}{N}H_2$ **(D)**
- Which of the following pairs of molecules are NOT structural isomers? **37**.

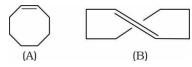



$$H_3C - C \equiv C - CH_3$$

38. Which of the following pairs are resonance structures of each other?



- (III) (A) I, II, III
- **(B)** I, IV
- (IV) II, III (C)
- **(D)** I, III, IV

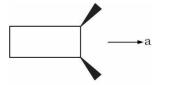

39. Which of the given compounds is the strongest acid?

- (A) 1
- 2
- 3
- **(D)** Both 1 & 2

40.

Relationship between (A) and (B) is:

- **(D**) Diastereomers (B) (C) Identical Structural isomer Enantiomer
- 41. What are the number of structural isomers possible in 1-butene and 1, 3-butadiene if any one H is replaced by D?
 - (A)
- 2.0
- **(B)**
- 4. 2
- (C)


2.4

 (\mathbf{D})

4. 4

a and b are diastereomers of the given compounds. What are the values of a and b respectively : 42.

- (A)
- 1, 1
- (B)
- (C) 2, 1
- (\mathbf{D}) 2, 2
- 43. Which compound would you not expect to be aromatic?

1, 2

- (A)

- (C)

R

 (\mathbf{D})

S

44. Which compound does not contain any conjugated multiple bonds?

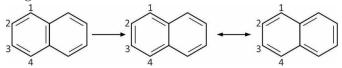
(B)

- 1, 2, 4-pentatriene

- (B)
- 1, 3-cyclobutadiene

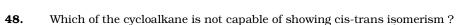
(C) 1, 5-hexadiene

- **(D**) 3-methyl-2, 4-hexadiene
- **45**. Which annulene would you NOT expect to be aromatic?
 - (A)
- [6]-Annulene
- [14]-Annulene **(C)**
- [16]-Annulene (**D**)
- [18]-Annulene
- 46. Which of the following statements concerning a pair of geometrical isomers are correct?
 - (1) They have different boiling points and melting points
 - **(2)** They have the same relative molecular mass


(B)

- (3) Their atoms are joined in the same order
- (4)They have same dipole moment
- (A) (1),(4) and (2) only

(B) (1),(4) and (3) only


(C) (2) and (3) only

- **(D)** (1), (2) and (3) only
- 47. There are three canonical structures of naphthalene. Examine them and find correct statement among the following:

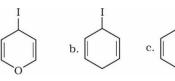
- All C C bonds are of same length (A)
- **(B)**
- C_1 C_2 bond is shorter than C_2 C_3 bond
- $C_1 C_2$ bond is longer than $C_2 C_3$ bond
- (D) None of the above

(B)

(C)

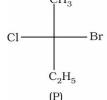
 (\mathbf{D})

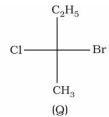
49. Two isomeric forms of a saturated hydrocarbon:

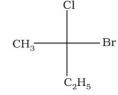

- (A) have the same structure
- (B) have different compositions of elements
- (C) have the same molecular formula
- **(D)** all of these are correct

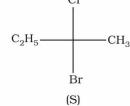
50. In the molecular orbital model of benzene, how many pi-electrons are delocalized about the ring?

- (A)
- **(B)**
- (C)


51. Compare the stability of carbocation formed when following iodides react with AgNO_3 .


- (A) a > b > c
- (C) b > c > a
- (\mathbf{D}) b > a > c




Consider the following structures (P), (Q), (R) and (S) and identify incorrect statement. **52**.

- (A) Q and R are identical
- **(B)** P and Q are enantiomers
- (C) P and R are enantiomers
- **(D)** Q and S are enantiomers

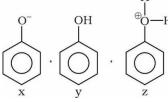
53. Which of the following statements can be used to prove that carbon is tetrahedral?

- (A) Methyl bromide does not have constitutional isomers
- **(B)** Tetrachloromethane does not have a dipole moment
- (C) Dibromomethane does not have configurational isomers
- **(D**) None of these

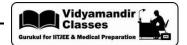
54. Which member of each of the following pairs of compounds is more readily deprotonated?

(A)

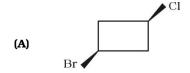
(B)

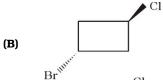

(C)

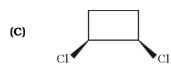
(D)

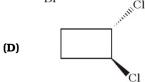


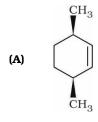
55.

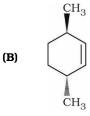

x, y and z denote the number of resonating structures of the given compounds. What is the value of x + y + z?

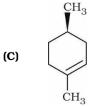

- (A)
 - 12
- 13 **(B)**
- (C) 10
- (D) 11



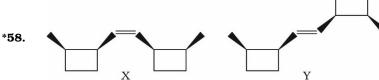

56. Which of the following compounds is optically active?

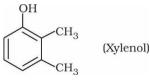






57. An optically active compound A with molecular formula C_8H_{14} undergoes catalytic hydrogenation to give an optically inactive product. Which of the following can be the structure of A?



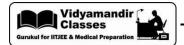


(A) X is optically active

(B) X is optically inactive

(C) Y is optically active

- **(D)** Y is optically inactive
- $\textbf{59.} \qquad \text{Number of positional isomers of given compound with } 6 \text{ membered aromatic ring are :}$



- **(A)** 3
- **(B)** 4
- **(C)** 5
- **(D)** 6
- $\textbf{60.} \qquad \text{Which of the following resonance structure contributes the most to the resonance hybrid?}$

(

- (A) OCH_3
- (B) ⊕ OCH₃
- (c) OCH₃
- (D) OCH3
- Which of the following is the correct expression for maximum number of configurational isomers ? n = number of stereocenters, m = number of stereogenic double bonds
 - (A) $2^{(n+m)}$
- **(B)** $2^{(m+2n)}$
- (c) $2^{\left(m+\frac{n}{2}\right)}$
- **(D)** $2^{\frac{(n+m)}{2}}$

62. Which of the following carbocation would have greatest stability:

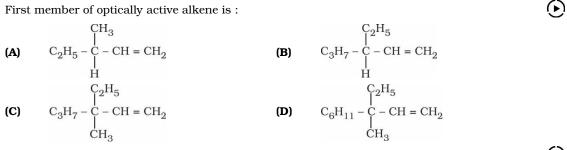
(A)
$$CH_3 - S - CH_2$$
 (B) $CH_3 - CH_2$ (C) $CH_3 - O - CH_2$ (D) $F - CH_2$

63. Most contributing structure in nitroetheneis:

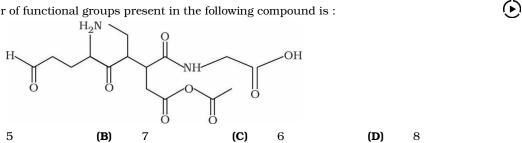
(A)
$$CH_2 = CH - N \bigcirc O$$

$$CH_2 - CH - N \bigcirc O$$

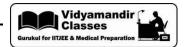
$$CH_2 - CH - N \bigcirc O$$


(c)
$$\overset{\ominus}{\text{CH}}_2 - \overset{\oplus}{\text{CH}} - \overset{\ominus}{\text{N}} \overset{\ominus}{\overset{\ominus}{\text{O}}}$$
 (D) $\overset{\oplus}{\text{CH}}_2 - \text{CH} = \overset{\oplus}{\text{N}} \overset{\ominus}{\overset{\ominus}{\text{O}}}$

64. The number of stereoisomers of the given compound which can exist are :


65. Choose the correct statement:

(A)


- (A) I effect operate in both σ and π bonds (B) I effect create net charge in molecule
- (C) I effect transfer electron from one carbon to another
- (D) I effect create partial charges and it is distance dependent
- 66. Which one of the following statements is not true?
 - (A) Diastereomers are a pair of stereoisomers that are not mirror images of one another
 - (B) A pair of enantiomeric compounds has identical melting points
 - (C) Diastereomers do not have equal specific rotations
 - (D) Diastereomers are superimposable mirror images of one another
- 67. First member of optically active alkene is:

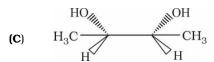
68. Number of functional groups present in the following compound is:

(A)



(

69. Arrange the following anions in decreasing order of stability:


- (A) R > Q > P
- (B)
- Q > R > P
- (C) P > R > Q
- **(D)** P > Q > R

70. Which of the following will show optical activity?

(**B**) H-

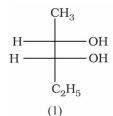
(D)

Br H Br

Me

Me

OH


OH

***71.** Which of the order of dipole moment is correct?

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

(c)
$$Cl$$
 Cl Cl (D)

72. Which of the following compounds are meso forms?

 $\begin{array}{c|c} CH_3 \\ H & CC \\ CI & H \\ CH_3 \\ \end{array}$

3 only

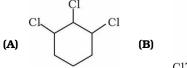
CH₃

- (A) 1 only
- (B)

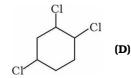
(C)

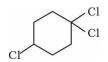
- 1 and 2
- **(D)** 2 and 3

73. Cl H and N are:

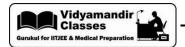

(A) d and l isomer

(B) cis and trans isomer

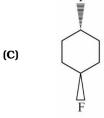

(C) functional isomer


(D) position isomer

74. Which of the following compounds does not have any geometrical isomer?



(C)


- **75.** If a mixture of 2-bromobutane has enantiomeric excess of 50% of (+)-2-bromobutane, the stereoisomeric composition of the mixture with respect to (+) and (-) enantiomer respectively is :
 - **(A)** 75% (+) and 25% (-)

(B) 70% (+) and 30% (-)

(C) 80% (+) and 20% (-)

- **(D)** 25% (+) and 75% (-)
- **76.** Which of the following molecules have dipole moment?
 - (A) F = C = C = C

 $(B) \qquad F \\ C = C = C$

- **(D)** F
- **77.** Which of the following molecules is expected to rotate plane polarized light?
 - (A)
- (B) Cl (C)
- OH
- $\mathbb{C}\mathrm{H}_3$

- **78.** Which of the following compounds will be optically active?

- (B) $H_3C N C_3H_2$
- (c) Me Br
- (D)
- Br

(D)

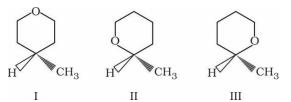
- 79. If optical rotation produced by Cl H then that produced by Cl H: CH_3 :
 - **(A)** -36°
- **(B)** 0°
- **(C)** +26°
- (**D**) Unpredictable

 \odot

- **80.** Which of the following compounds contains most acidic H?
 - (A) $CH_2 = CH_2$


(B) $HC \equiv CH$

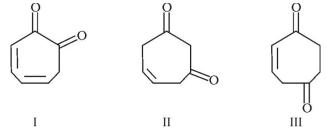
(c)


- **(D)** $CH_2 = CH CH_2 CH = CH_2$
- 81. $CH_3 CH S O$ and $CH_3 CH O S$ CH_3 CH_3 CH_3 CH_3 CH_3
 - (A) functional group isomers
- (B) metamers

(C) optical isomers

(D) geometrical isomers

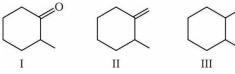
82.



 \odot

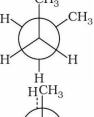
Which among these are stereoisomers?

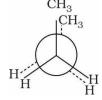
- (A) I and II
- (B) I and III
- (C) II and III
- (D) all of these


83.

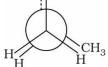
Among these compounds, the order of enol content should be :

- (A) II > III > I
- **(B)** I > II > III
- (C) III > II > I
- **(D)** I > III > II


84.

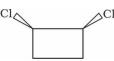

Which of these compounds will exhibit geometrical isomerism?

- (A)
- **(B)** II
- (C) III
- (D) None of these
- **85.** Which of the following conformers of n-butane has torsional strain?

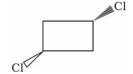

(A)

(B)

(C)



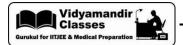
(D)


D) Both (B) and (C)

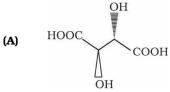
86. Which of the following compounds does not contain the plane of symmetry?

(A)

(B)

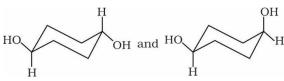


(C)



(D)

87. Identify the molecule which is meso.



(B) HOOC COOH

(c) CH_3

(**D**) H OH

88. How are the following two compounds related?

- (A) Enantiomer
- (B) Diastereomer
- Homomer

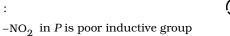
 H_5C_2

(C)

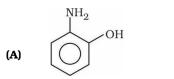
(D) Racemic mixture

 NH_2

 $\dot{\mathrm{NO}}_2$


(Q)

 C_2H_5


89. Choose incorrect statement regarding following compounds :

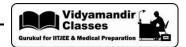
$$_{\mathrm{H_{3}C}}$$
 and $_{\mathrm{CH_{3}}}$ $_{\mathrm{H_{3}C}}$

- (A) The boiling point of both compounds are same
- **(B)** Both are optically active
- **(C)** Equal mixture of both compounds are optically inactive
- **(D)** Both are diastereomers
- **90.** The basic nature of amines is due to lone pair of electron on N atom. But (P) is more basic than (Q) because:

- **(B)** $-NO_2$ in P is stronger inductive group
- (C) $-NO_2$ in P is stronger -M group
- **(D)** $-NO_2$ in P is weaker -M group
- **91.** Steric inhibition of resonance is not applicable in :

$$H_3C$$
 CH_3 CH_3

 $\dot{\mathrm{NO}}_2$

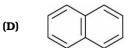

(P)

 $\mathrm{H_{3}C} \underbrace{\hspace{1cm}}^{\mathrm{NO_{2}}} \mathrm{CH_{3}}$

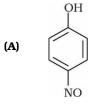
(A)

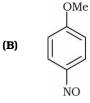
(B)

(D)

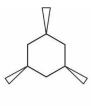


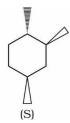
92. Which one of the following compounds is not aromatic?

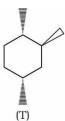




93. Which of the following compounds will exhibit tautomerism?




94. Arrange the following trimethyl cyclohexane in increasing order of their heat of combustion:



(Q)

- (P) P < Q < R < S < T
- (R)
 - **(B)** S < P < R < Q < T

(C) R < Q < P < S < T

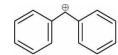
- **(D)** T < S < R < P < Q
- **95.** Arrange the following in decreasing order of heat of hydrogenation :

- (A)
- P > Q > R > S
- S > R > Q > P
- Q > P > S > R
- **(D)** R > Q > P > S

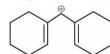
96. Which of the following has higher dipole moment?

(B)

(C)



97. Hyperconjugation occurs in :



(B)

(C)

- **(D)** None of these
- *98. Which of the following will not react with Na metal?

(B)

(C)

(D)

- *99. Which of the following fails to produce Prussian blue colouration in Lassaigne's test for detection of nitrogen?
 - (A) Methyl hydrazine (CH_3NHNH_2)
- **(B)** Hydrazoic acid (HN_3)
- (C) Semicarbazide ($NH_2NHCONH_2$)
- **(D)** All
- *100. In which of the following compounds, nitrogen is estimated by Duma's method?

(A)
$$O_2N$$
 OH OH NO_2

(D)
$$\begin{array}{c} O_2 N \\ N \\ N O_2 \end{array}$$